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1. Introduction

Finite Difference (FD) methods approximate derivatives of a function by
local arguments (such as du(z)/dz = (u(x + h) — u(z — h))/2h, where h
is a small grid spacing) — these methods are typically designed to be exact
for polynomials of low orders. This approach is very reasonable: since the
derivative is a local property of a function, it makes little sense (and is
costly) to invoke many function values far away from the point of interest.

In contrast, spectral methods are global. The traditional way to introduce
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them starts by approximating the function as a sum of very smooth basis
functions:

N
u(z) = Z ar®i(x),
k=0

where the ®,(z) are, for example, Chebyshev polynomials or trigonometric
functions — and then differentiate these exactly. In the context of solving
time-dependent Partial Differential Equations (PDEs), this approach has
notable strengths:

1  for analytic functions, errors typically decay (as N increases) at an
exponential rather than at a (much slower) polynomial rate;

2 the method is virtually dissipation-free (in the context of solving high
Reynolds number fluid flows, the low physical dissipation will not be
overwhelmed by large numerical dissipation);

3 the approach is (surprisingly) powerful for many cases with nonsmooth
or even discontinuous functions;

4  especially in several space dimensions, the relatively coarse grids which
suffice for most accuracy requirements allow very time- and memory-
effective calculations.

However, there are also factors which might cause difficulties or inefficiencies:
certain boundary conditions; irregular domains; strong shocks; variable res-
olution requirements in different parts of a large domain; partly incomplete
theoretical understanding.

In many applications where these disadvantages are not present (or they
can somehow be overcome), FD or FE (Finite Element) methods do not even
come close in efficiency. However, the situation in most major applications
turns out less clear-cut than this. At present, spectral methods are highly
successful in several areas such as turbulence modelling, weather prediction,
nonlinear waves, seismic modelling etc. and the list is growing (see, for
example, Boyd (1989) for examples and references).

Spectral methods have been a tool for analytic studies of differential equa-
tions since the days of Fourier (1822). The idea of using them for numerical
solutions of ordinary differential equations (ODEs) goes back at least to
Lanczos (1938). Their current popularity for PDEs dates back to the early
1970s and the works of Kreiss and Oliger (1972) and Orszag (1972) — facili-
tated by the Fast Fourier Transform (FFT) algorithm presented by Cooley
and Tukey (1965).

Although spectral methods are normally introduced in the way we have
indicated (through expansions using smooth global functions — the topic of
Section 2), there is a useful alternative: pseudospectral (PS) methods can
be seen as a special case of high-order FD methods (Fornberg 1975, 1987,
1990a,b). The introduction to Section 3 lists some of the advantages this
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latter approach offers. In the remaining sections, key properties/variations
of PS methods are discussed (using whichever viewpoint is most illuminating
for the issue being discussed).

To obtain a uniform style, this review has been written and illustrated
by BF from jointly prepared material. As a consequence, readers looking
for functional analysis or proofs of technicalities are hereby warned not to
waste their time proceeding beyond this point.

For one of us (BF), the interest in PS methods goes back to his PhD in
1972 under the supervision of H.-O. Kreiss. For later interactions, we wish,
in particular, to acknowledge discussions with L.N. Trefethen.

2. Introduction to spectral methods via orthogonal functions

Spectral methods are usually described in the way we first indicated — as
expansions based on global functions. Given a differential equation with
boundary conditions, the idea is to approximate a solution u(z) by a finite
sum v(z) = Y0y ax®r(z) (in the case of a time-dependent problem, u(z, t)
approximated by v(z,t) and ai(t)). Two main questions arise:

1 from which function class to choose ®x(z), k =0,1,... and
2 how to determine the expansion coefficients ay.

These are addressed in Sections 2.1 and 2.2. Section 2.3 introduces cardinal
functions and differentiation matrices — important tools for both understand-
ing and computation (to be discussed in greater generality in Section 3.4
following the FD-based introduction to PS methods).

Reviews of this ‘classical’ approach to spectral methods can be found in
Gottlieb and Orszag (1977), Voigt et al. (1984), Boyd (1989), Mercier (1989)
and Funaro (1992).

2.1. Function classes

Three requirements need to be met:

1 The approximations 335 ; ar®x(z) to v(z) must converge rapidly (at
least for reasonably smooth functions).
2 Given coeflicients ay, the determination of b; such that

d N N
(X an@) =Y bt (2.1
k=0 k=0

should be efficient.
3 It should be possible to convert rapidly between coefficients ax, k =

0,...,N and the values for the sum v(z;) at some set of nodes z;,
1=0,...,N.
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Periodic problems The choice here is easy — trigonometric expansions
satisfy all the requirements. The first two are immediate; the third was
satisfied in 1965 through the FFT algorithm.

Non-periodic problems In this case, trigonometric ezpansions fail on
requirement 1 — an irregularity will arise where the periodicity is artificially
imposed. In the case of a discontinuity, a ‘Gibbs’ phenomenon’ will occur
(see Section 2.3). The coefficients a, then decrease only like O(1/N) as
N — .

Truncated Taylor ezpansions v(z) = Yn-q arz® will also fail on require-
ment 1: convergence over [—1,1] requires extreme smoothness of v(z), i.e.
analyticity throughout the unit circle.

The function class that has proven, by far, the most successful is ortho-
gonal polynomials of Jacobi type with Chebyshev and Legendre polynomials
as the most important special cases (cf. Table 1). These polynomials arise
in many contexts:

° Gaussian integration formulae achieve high accuracy by using zeros of
orthogonal polynomials as nodes.

e  Singular Sturm-Liouville eigensystems are well known to offer superb
bases for approximation — the Jacobi polynomials are the only poly-
nomials arising in this way.

e  Truncated expansions in Legendre polynomials are optimal in the L2-
norm (for max-norm approximations of smooth functions, truncated
Chebyshev expansions are particularly accurate).

e  Interpolation at the Chebyshev nodes

zp = —cos(rk/N), k=0,1,...,N

give polynomials PSH which are always within a very small factor of
the optimal in max-norm approximation of any function f(z):

If — PRH|| < (1 + ASDIIf - PRETY.

Here ASH is known as the Lebesgue constant of order N for Chebyshev
interpolation. It depends only on N; properties of f affect ||f — PSFT||
as described by Jackson’s theorems (Cheney, 1966; Powell, 1981).
A]CVH is smaller than the constant for interpolation using Legendre ex-
pansions and far superior to the disastrous one for equi-spaced inter-
polation (more on this ‘Runge phenomenon’ in Section 3.3).

ASH = Olog N), ALEG = 0(VN), AE' =02V /Nlog V).

For references on the three Lebesgue constants, see Rivlin (1969, p. 90),
Szegb (1959, p. 336) and Trefethen and Weideman (1991) respectively.

These points confirm that Jacobi polynomials satisfy requirement 1. Be-
cause of the first derivative recursions (and the lack of explicit z-dependence



Table 1. Jacobi polynomials’ fact sheet

LEGENDRE CHEBYSHEV JACOBI
Weight W) | 1 1 (1-2)*(1 +z)P (a=p=0 Legendre)
function 1-z a>-1, 8> -1 (a=p8= Iw Chebyshev)
1 1 W
. . 324+ a+ Bz + (a-B)
First few 322 -1 2z% — 1 s2+ QH+ B)(4 +wQ +8)z?+ Ha-B)B+a+8)
polynomials 223 - 2 423 - 3z tslla -8 -4+t p)
35,4 _ 15,2 3 4 2
63,5 _ 35,3 4 15, 1625 — 2023 + 5z Ot )
8 4 8 27" koo (") G (2 = D™ F(z + 1)F
Orthogonality 0 m#n W N W M -0 0 o m#ED
1 2 . _ b= = 2% C(nta+1)L(n+8+1 . _
S @@ W dz Intl sm=n z im=n>0 G:+Q+u+:12=+p+m+$ Tm=mn
oL  CE ) CEE E Y ey v
Three term AW (2n +:~wwh Tny1 — 22T, —[(2n+a + B8+ 1)(a® - 8?)
recursion tnl., = o: +Th1=0 +@2rt+a+p)2n+a+8+1)(2n+a+ B+ 2)z]P,
n-1 +2(n+a)n+B)2n+a+8+2)P,_1 =0
Differential (1-2?)L7 ~22Ly, (1= 2*)T, ~ =T, (1-2®)P/+[(8~a) - (a+ B +2)2]P,
equation +nn+ 1)L, =0 + 22T, =0 +nn+a+8+1)P, =0
First ' 1 7 22n tat f)(ntotfntat )Py,
L T+l ntiln +2(a-B)(n+a+B8)(2n+a+ B+ 1)P,
derivative , 1 v n
recursion =@n+ DIn+ Ly, =2l + ;3T -2n+a)(n+pB)2n+a+B+2)P,_,

=(n+ta+f)2n+a+B)(2n+a+8+1)(2n+a+8+2)P,
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in these, see Table 1), requirement 2 is met. In the case of Chebyshev poly-
nomials, the relation sought in (2.1) becomes

(10 -1 bo al
i 0 -3 b1 as
§ 0 -3 by a3
s 0 -3 x b3 - a4 . (2.2)
g 0 bn_2 an—1
L WI‘_—Q_ _bN—-l_ | anN ]

and similarly for Legendre and Jacobi expansions. Requirement 3 is clearly
satisfied for the Chebyshev case if we choose x; = —cos(ni/N),1=0,..., N
(cosine FFT) — as we shall see later, the additional cost in the other cases
need not be prohibitive. For these reasons, Chebyshev (and to a lesser
extent, Legendre) polynomials have become the almost universally preferred
choice for nonperiodic spectral approximations.

The special case of Jacobi polynomials Pr(la’m(x) with a = (3 goes under
its own name - Gegenbauer or Ultraspherical polynomials (again including
Legendre and Chebyshev as special cases). For an overview of orthogonal
polynomials, see, for example, Sansone (1959) and Szegd (1959).

Formulas similar to (2.1) are also available when (2.1) is generalized, for
example, to

N N
s (T @) = S betn@) pa=12..
P\ o k=0
(see the Appendix in Gottlieb and Orszag (1977)). These are essential for
Tau and Galerkin — but not for collocation (PS) approximations; see the
next section and Appendix 1.

2.2. Techniques to determine the expansion coefficients

The three main techniques to determine expansion coefficients ay are Tau,
Galerkin and Collocation (PS). In all cases, we consider the residual R,(z)
(or R,(z,t)) when the expansion is substituted into the governing equation.
We need to keep this residual small across the domain and also to satisfy
the boundary conditions.

e In the Tau technique the a; have to be selected so that the boundary
conditions are satisfied and the residual has to be made orthogonal to
as many of the basis functions as possible.

e  For the Galerkin technique we combine the original basis functions into
a new set in which all the functions satisfy the boundary conditions.
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Then the residual is required to be orthogonal to as many of these new
basis functions as possible.

e  Finally the Collocation (PS) technique is similar to the Tau one: the
aj have to be selected so that the boundary conditions are satisfied but
the residual is made zero at as many (suitably chosen) spatial points
as possible.

Implementation details for a model problem are given in Appendix 1.

The Tau method was first used by Lanczos (1938). The Galerkin idea
is central to FE methods. Spectral (global) versions of it have been in
use since the mid-1950s. The FFT algorithm as well as contributions by
Orszag (1969, 1970; on ways to deal with nonlinearities) have contributed
to its current usage. The collocation approach was first used for PDEs with
periodic solutions by Kreiss and Oliger (1972). It was referred to as the
‘pseudospectral method’ in Orszag (1972).

The collocation (PS) method can be viewed as a method for finding nu-
merical approximations to derivatives at grid points. Then, in a FD-like
manner, the governing equations are satisfied pointwise in physical space.
This makes the PS method particularly easy to apply to equations with
variable coeflicients and nonlinearities, as these only give rise to products of
numbers rather than to problems of determining the expansion coefficients
for products of expansions.

The rest of this review article will focus entirely on the PS method.

2.3. Cardinal functions — example of a differentiation matriz

The concepts of Cardinal Functions (CFs) and of Differentiation Matrices
(DMs) are both theoretically and numerically useful well beyond the realm
of methods derived from orthogonal functions. Therefore, we postpone the
main discussion of these until Section 4.3 (when our background is more
general) and consider them here only in the case of the Fourier PS method.

The trigonometric polynomial which interpolates periodic data can be
thought of as a weighted sum of CFs, each with the property of having unit
value at one of the data points and zero at the rest. This is very similar
to how Lagrange’s interpolation formula works - the main difference being
that, in this Fourier case, all the CFs are just translates of each other.
For references to CFs, see E.T. Whittaker (1915), J.M. Whittaker (1927),
Stenger (1981).

Assume for simplicity that we have an odd number n = 2m + 1 of grid
points, at locations z; = i/(m + 1), i = -m,...,-1,0,1,...,m in [-1,1].
By inspection,

sin(m + L)nx
(2m + 1)sin inz
(2.3)

1
@, (z) = oy 1{% + cosmz + cos2nz + ...+ cosmmr} =
2
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is of the right form and satisfies

etc., if periodically extended)|

1,i=0 [£(2m +1),£(4m + 2),
@m(xi) =
0 otherwise.

Figure 1 displays the CF ®g(x) and illustrates how its translates add up

to give the trigonometric interpolant to a step function, and the Gibbs’
phenomenon.

From (2.3) it follows that

0,5 =0 [£(2m+1), £(4m+2), etc.,
d : -
4 () = i if periodically extended]
dz (= 1) otherwise.
2sinfin/(2m + 1))
The PS derivative v'(z;) of a vector of data values v(x),k = —m,...,m

can therefore be obtained as a matrix X vector product. The element at
position (%, ) of this matrix is equal to d®,,(x;—;)/dz. This matrix is the
DM for the periodic PS method (first derivative, odd number of points).

3. Introduction to PS methods via finite differences

FD formulae of increasing orders of accuracy provide not only an alternative
introduction to PS methods (for both the periodic and nonperiodic cases);
they suggest generalizations and offer additional insights.

Orthogonal polynomials/functions lead only to a small class of possible
spectral methods — the FD viewpoint allows many generalizations. For
example, all classical orthogonal polynomials cluster the nodes quadrat-
ically towards the ends of the interval — this is often, but not always
best.

An FD viewpoint offers a chance to explore ‘intermediate’ methods
between low-order FD and PS. One might consider methods of not
quite as high order as the Chebyshev spectral method and with nodes
not clustered quite as densely — possibly trading some accuracy for
stability and simplicity.

Two separate ways to view any method always give more opportunities
to understand/improve/analyse it.

Many special enhancements have been designed for FD methods. View-
ing PS methods as a special case of FD methods often makes it easier to
carry over such ideas. Examples include staggered grids, upwind tech-
niques, enhancements at boundaries, polar and spherical coordinates,
etc. (discussed in Section 5).

Comparisons between PS and FD methods can be made more consis-
tent. PS methods represent limits of increasingly accurate FD methods
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FOURIER CARDINAL
FUNCTION (FCF)

sin (m + )nx

On®) = G D sn Z

shown for m=8.

Sum of translates of FCFs =
Fourier interpolation of a step
function.

Equi-spaced Fourier

interpolatiorr —

Truncated Fourier —_—

series

GIBBS' PHENOMENON

Overshoots (at each side of
jump) approx. 14 % and
9 % resp. of its height

(as m - ).

Enlargement
of overshoot
area

0.8
-0.05 0] 0.05 0.1

Fig. 1. Fourier CFs and Gibbs’ phenomenon.
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— the FD viewpoint provides a unifying framework in which to under-
stand and interpret all these methods.

Sections 3.1 and 3.2 provide some general material on FD approximations,
allowing us in Section 3.3 to discuss different types of node distribution. In
Section 3.4, we derive the DM for the case that was considered in Section 2.3
(periodic problem, equi-spaced grid) and obtain an identical result — hence
the methods are equivalent. In Section 3.5, this equivalence is seen to be
very general.

3.1. Algorithm to find FD weights on arbitrarily spaced grids

Centred FD formulae for equi-spaced grids are readily available from tables
and can be derived by symbolic manipulation of difference operators. For
example, the centred approximations (at a grid point) to the first derivative
are:

flz) = — 3 f(z—h)+0f(x)+} f(z+h) 1/R+O(R?)
=[5 f(z=2h)—2 f(z—h)+0f(z)+ 2 f(z+h)— 75 f(z+2h)]/h+O(h?)

etc.,

exact for all polynomials of degrees 2,4, ... resp. It is convenient to collect
weights like these as is done in Table 2 (for the kth derivative, divide with

RF ).

Another equi-spaced case of interest is one-sided stencils which are often
necessary use at boundaries. Table 3 shows some weights in this case. The
weights for the first derivative are the ones that arise in backward differen-
tiation formulae for ODEs, see Lambert (1991).

To explore the general properties of FD schemes (and, more importantly,
to use such schemes), it is desirable to have a simple algorithm for the more
general problem:

Given: zg,z1,...,Z,: grid points (nonrepeated, otherwise arbitrary)
€: point z = ¢ at which the approximations are wanted (may, but need
not be at a grid point)
m: highest order of derivative of interest

Find: weights cf’ ; such that the approximations

dkf
dxk

chﬁjf(mj), k=0,1,...,m,i=kk+1,...,n
£ =0

r=
are all optimal.

A short and fast algorithm for this was discovered only recently (Fornberg,
1988b, in more detail 1992):
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Table 1. Weights for some centred FD formulae on an equi-spaced grid: D,
order of deriwvative; A, order of accuracy.

Approximations at £ =0 (z = coordinates at nodes)

D A —4 -3 -2 -1 0 1 2 3 4
0 o 1
—1 1
12 ! 0 1
—_ 1 -1
4 b3 3 0 3 12
I — 3 — 3 1
6 60 ?% % 0 4 20 60
1 —_4 1 —4 4 —1 4 —_1
8 280 105 5 5 0 5 5 105 280
2 2 1 -2 1
— L E -3 4 — 1
4 12 3 2 3 12
6 1 _3 3 — a9 3 -3 L
90 20 2 18 2 20 90
8 _8 —1 8 — 205 8 —1 - —_1_
560 315 5 5 72 5 5 315 560
3 2 —1 1 0 -1 1
1 _ 1 —1 -1
4 1 1w 0 -1 1 1
6 — I R 169 3 0 —-a 169 _ 3 7
240 10 120 30 30 120 10 240
4 2 1 —4 6 —4 1
—_ -1 28 — 13 -1
4 % 2 '2}' 3 2 2 3
6 I —2 — 122 o1 — 122 169 —2 7
240 5 15 8 15 60 5 240

08’0 =1, a:=1
fori:=1ton
g:=1
forj:=0toi—1
B = B(z; — x;)
for k := 0 to min(i, m)
Cf,j = ((z; - f)ci‘c—-l,j - kc?—-ﬁj)/(mi - ;)
for k := 0 to min(i, m)
cf = a(kci'c—_ll,i—l — (zic1 —&)cF_1-1)/8

a:=pf
Notes.

1 Any noninitialized quantity referred to is assumed to be equal to zero.

2 Only four operations are needed for each weight (to leading order; note
that the subtractions z; — £ and z; — z; can be moved out of the
innermost loop).
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Table 2. Weights for some one-sided FD formulae on an equi-spaced grid:

D, order of derivative; A, order of accuracy.

Approximations at z = 0 {z = coordinates at nodes)
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Fig. 2. Magnitude of weights for centred approximations to the first derivative on
an equi-spaced grid (cf. Table 2).

3 The calculation of the weights is numerically stable (however, especially
in the case of high derivatives, applying FD weights to a function may
lead to severe cancellations and loss of significant digits).

4  The special case m = 0 offers the fastest way known to perform poly-
nomial interpolation at a single point (in particular, significantly faster
than the classical algorithms by Aitken and Neville).

5 If we are only interested in the weights for the stencils based on all
the grid points z;,5 = 0,1,...,n (and not in the lower-order stencils
based on fewer points), we can omit the first of the two subscripts for ¢
(i.e. it suffices to declare a two-dimensional array to hold cJ {2 ™ — the
‘overwriting’ that will occur internally in the algorithm will be safe).

A Fortran code (with test driver) for this algorithm is given in Appendix 2.

3.2. Growth rates of FD weights on equi-spaced grids

Figures 2 and 3 illustrate how the magnitudes of the weights for the first
derivative grow with increasing orders of accuracy (cf. Tables 2 and 3).

In the centred case, approximations of increasing orders of accuracy con-
verge to a limit method of formally infinite-order of accuracy. For the first
derivative (m = 1), this can be seen directly from the closed form expression
for the weights c,l,,j (p (even) = order of accuracy, j = z-position of weight):

1 (=1 (4p)?? j=41,42,... ,+1p
;=13 3Gp+iGp ) S
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16000

12000

Fig. 3. Magnitude of weights for one-sided approximations to the first derivative

on an equi-spaced grid (cf. Table 3).

Clearly, the limit for p — oo exists and

(_1)j+1

j=41,%2, ...
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Beyond the second derivative, for which

p/2

. . 9

P T T S R ST
=1

closed form expressions for weights become very complicated. However,
that does not affect the ease with which they can be calculated (using the
algorithm in Section 3.1) or the existence of simple limits. For the second
derivative, the limit becomes

_1y+1
9 {2(—1)— j=41,42, ...

Coo,j = 72 ,
—3im j=0.

For higher derivatives the decay rates alternate between O(1/5) and O(1/;2)
for odd and even derivatives respectively (exact formulae for

m
00,77

c m=12,...

are given in Fornberg (1990a)).
The situation is very different for one-sided approximations. The closed
form expression for the first derivative is

—1)y+1

1 _{E-L‘(p) j:1’27"',p

i = J J
=1/ j=0.

The magnitudes of the weights form (nearly) a Gaussian distribution,
which becomes increasingly peaked at the centre of the stencil while growing
in height exponentially with p (~ 7~1/2p=3/29P+3/2) For higher derivatives,
the general character and growth rates remain similar. Partly one-sided
approximations initially grow more slowly but will also ultimately diverge
exponentially. In the case of the first derivative (just described), the asymp-

totic rate is multiplied by a factor of s!/p® if the derivative is evaluated s
steps in from the boundary.

3.3. Generalized node distributions

The previous discussion about the size of the weights in centred versus one-
sided FD formulae suggests, for a nonperiodic problem, that the nodes need
to be concentrated towards the ends of the interval (to offset the loss of
accuracy which would otherwise arise because of the very large weights).
Let pu(x) denote how the density of a node distribution varies over [—1,1]
(i.e. the distance between adjacent nodes decreases like 1/nu(z) as n in-
creases. To prevent changes in pu(z) affecting the total number of nodes
that fit into [—1,1], we require f_ll p(z)dz = 1. A one-parameter family
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1.0 -
0.5 - - == Chebyshev
(- (Legendre)
0.0 - - — Equi-spaced
-0.5- - ’
' ' ! X
X(0) = -1. X(N/2) « 0. X(N) = 1.

Fig. 4. Distribution of nodes corresponding to density function p.(z), shown for
v € [-0.5,1] (n = 20). The Legendre distribution (of extrema) is not obtained
exactly for any «, but v = 0.4785 gives the closest (least-squares) fit in this case of
n = 20. This difference (to 0.5 — it vanishes as n — oo} is illustrated at the right

edge of the figure.

of density functions is outlined below, followed by two special cases that it
incorporates:

Density Node locations Comments

function z;, ] =0,1,...,n

py(z)=cy/(L=2%)7  j/n=[2f py(z)dz v <1 Cv=m
po(z) =1 z; =—-1+2j/n ~v = 0; equi-spaced

pi/2(z) =1/mV1—2? x;=~cos(mj/n) = 1; Chebyshev

Figure 4 shows how the nodes move as a function of 4. One key question is
whether quadratic clustering (the case v = 0.5) is necessary. Several general
arguments suggest this in the limit of n — oo (with the FD approach to PS
methods, the effects of other clusterings can be explored in special cases —
see Section 5):

All classical orthogonal polynomials feature quadratic node clus-
tering at the ends. Changing o and 3 in the weight function (1 —z)*(1 -
z)P for Jacobi polynomials will still leave the nodes quadratically clustered
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a=f8= o0 ' . +—o—e—esm Legendre
o= B= 05 me e o o o . . . - - - o e o o oocw Chebyshev

Fig. 5. Difference between the location of extrema for Legendre and Chebyshev
polynomials {(n = 20).

(this follows, for example, from their differential equation, see Table 1).
Figure 5 compares the nodes (extrema) for Legendre and Chebyshev poly-
nomials of order 20 (corresponding to o = 3 =0 and o = § = 1) - there
is hardly any noticeable difference. Figure 4 also illustrates this, i.e. how
small an effect changing o = 3 has compared with changes in 7.

To get the least possible interpolation error, the nodes must clus-
ter as in the Chebyshev case. A heuristic argument for this goes as
follows: let p,(z) be the interpolation polynomial of degree n to f(x) on
[-1,1]. The remainder term is

1

f(:l?)—pn(l‘)— (n+1

f(n—H ﬁ :L‘ _ l'j)

for some ¢ € [—1,1]. The only part that can be controlled by re-positioning
the nodes z; is the product. Since the highest order term is 1 - "1, the
question becomes: which polynomial of that form stays smallest over [—1,1]?
This is a well known property of Chebyshev polynomials.

With any other type of clustering, convergence will require f to
be analytic in some domain away from the interval [-1, 1]. In a
complex 2z = x + iy plane, a Taylor series converges in the largest circle
around the expansion point that is free of singularities. This result gen-
eralizes to interpolating polynomials (when the nodes are distributed over
an interval rather than all lumped at one point) as follows (Krylov (1962),
Ch. 12, Markushevich (1967); general results on polynomial interpolation
can further be found in Walsh (1960), Davis (1975), Gaier (1987) etc.).
Given a node density p(z) (on [—1,1]), form the potential function

d(2) = — /1 p(x)log |z — z|dxz + constant. (3.2)
-1

Then p,(z) converges to f(z) inside the largest equi-potential curve that
does not enclose any singularity of f(z) (and diverges outside it).

Figure 6(a) shows (as a thick straight line above the z-axis, at centre of
the figure) the graph of pg(z) = L and a matching equi-spaced set of nodes
on the z-interval [—1,1] (barely visible). The heavy contour line on the
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potential surface
#(z) = 1Re[(1 — z)log(l — 2z) — (=1 — 2)log(—-1 - 2)] + C

surrounds the smallest domain that includes [—1,1] and is bounded by an
equipotential curve. The function f(z) must therefore be analytic every-
where within this domain for convergence to occur on [—1,1]. Any singular-
ity within this domain restricts convergence to a still smaller equi-potential
region, leading to the ‘Runge phenomenon’ — divergence near the ends of
the interval.

In the Jacobi polynomial case

p(z) =1/(nv1—z?).

Equation (3.2) can then again be evaluated in closed form:

¢(z) = —|log |z + V22 - 1}| + C

(like the previous formula, correct for all complex values of z when selecting
the conventional branches for the logarithm and square root functions).

Figure 6(b) shows how the potential surface ¢(z) forms a perfectly flat
ridge of the potential surface along [—1, 1]. This clearly looks optimal — the
only possibility that convergence to f(z) on [—1,1] does not require f(z) to
be analytic anywhere off the interval [—1,1].

Finally, Figure 6(c) shows what happens when the nodes cluster still more
densely towards the ends (v = 0.7) — convergence again requires analyticity
outside the interval.

3.4. Ezample of a differentiation matriz

We consider the same situation as in Section 2.3 — the first derivative ap-
proximated on a periodic, equi-spaced grid. Instead of using trigonometric
interpolation, we employ the limiting FD formula (3.1) — of infinite width,
but possible to apply since periodic data can be repeated indefinitely. As-
suming N = 2M +1 and adjusting the weights for a mesh spacing of h = 2/N
(rather than h =1 as in (3.1)), we get
~1)y+1
cl,_{ﬂ—( U o
00,5 — 2 J
0 j=0.

As Figure 7 illustrates, period-wide sections of the stencil can be added
together to create an equivalent stencil covering only one period of the data.
Its weights become

ﬁ(_l)j+l i (-1 i _(=DF j=41,42,. M
d})oj: 9 ]+Nk 2 k+]/N (£(M+1),..., £(N-1))

0 j=0.
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LIMITING FD METHOD ON PERIODIC DATA

PERIODIC REPETITIONS g:%:f:'“ PERIODIC REPETITIONS
o
°
EXAMPLE OF % oo °

DATA . oo 0%, oo

WEIGHTS IN FD I e
STENCIL (UMIT — —#°0%e%e% %%, | o .I. et etetetetetet — -
METHOD) o,
S = ey
ASSEMBLY
OF WEIGHTS Y
INTO A ONE- -— — Y \ﬁ Y /L j/ j < Y _
;E:'NOCDIL WIDE ADD TOQETHER SECTIONS ADD TOQETHER SECTIONS
EQUIVALENT o« *
ONE-PERIOD . . °
WIDE t. ol
STENCIL .

PERFORM PERIODIC CONVOLUTION OF THIS STENCIL WITH ONE PERIOD OF THE DATA

RESULT EQUIVALENT TO PERIODIC PS METHOD

Fig. 6. Application of the limiting FD method to periodic data.

The DM is cyclic: its ¢, jth element is aloo i—j- Noting the identity

I

s
Z k+:r i

sin7x’

we get

w(—=1)7 o
D;; = { 2sin(n(i — j)/N) Z 7&]' (3.3)
0 1=7.

3.5. Equivalence of PS methods and limits of FD methods

Periodic case The DMs derived in Sections 2.3 and 3.4 are identical —
hence the two methods are equivalent. With only little additional effort this
can be shown to generalize to derivatives of any order, to even numbers of
points, to ‘staggered grids’ (a topic discussed in Section 5.3) etc.; for details,
see Fornberg (1990a).

Nonperiodic case No periodic data extensions are now available. The
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order of accuracy for the approximations corresponds to the number of grid
points (rather than being formally infinite). The PS method now turns out
to be equivalent to using the FD approximations whose stencils extend over
all the grid points. This can be seen as follows.

PS approach Consider data given at n+1 points on [—1, 1] (distributed, for
example, according to the zeros or extrema of some orthogonal polynomial
— as is customary in PS collocation; however, their distribution is irrelevant
for our present argument.) By means of expansion in these polynomials, the
PS method provides the exact derivative of the interpolation polynomial
going through the data at these points.

FD approach With no periodic data extensions, we can, at best, consider
FD stencils which are as wide as the grid is wide. To approximate derivatives
at the grid points, the FD weights have to be calculated separately for
each point. Every one of these approximations will be exact for any nth-
degree polynomial. In particular, they are all exact for the interpolating
polynomial.

For any given data and distribution of (distinct) nodes, the interpolating
polynomial of minimal degree is unique. Since both approaches give the
exact results for this polynomial, they will always give the same results —
hence, the approaches are equivalent.

4. Key properties of PS approximations

In the previous sections, we have repeatedly referred to the exponential
convergence rate of spectral methods for analytic functions. This is discussed
in more detail in Section 4.1. When functions are not smooth, PS theory is
much less clear. An approximation can appear very good in one error norm
and, at the same time, very bad in another. As illustrated in Section 4.2,
PS performance can still be very impressive — this is exploited in the major
PS applications. The concluding Sections 4.3-4.5 deal with implementation
issues; primarily differentiation matrices and their influence on time stepping
procedures.

4.1. Convergence of PS methods for smooth functions

Nonperiodic case Polynomial interpolation of smooth functions based on
the Chebyshev nodes (as well as expansions in Chebyshev polynomials) are
well known to provide approximations with nearly uniform accuracy over
[—1,1] whereas interpolation based on equi-spaced points can diverge near
the ends (the ‘Runge phenomenon’). The potential functions described in
Section 3.3 provide a general tool for addressing issues like these - when and
with what rates convergence will occur.

In the Chebyshev case (v = 0.5), the relationship between the potential
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contours and the convergence rates becomes particularly simple. For a con-
vergence rate o, a € (0,1), on z € [—1,1], the nearest singularity is located
on the ellipse
= v’ 1 4.1

G+ 1P " Gla-1japr " iy
(with foci at £1). Conversely, given the location of the nearest singular-
ity, this equation gives the convergence factor a. The derivation of (4.1)
requires no potential considerations — it follows from the form of Lagrange’s
interpolation formula and requires no potential considerations - it follows
from the form of Lagrange’s interpolation formula and noting that

To(z) = 1(z" +1/2"),

where
z+4+1/z) =x.

If we here consider x and z as complex variables, the ellipses (4.1) in the
z-plane correspond to circles in the z-plane, centred at the origin and with
radii 1/c.

The fundamental result about exponential convergence rates given in the
caption to Figure 6 is valid for any node distribution functions — not just
those defined through the parameter .

To use these analytic results to illustrate how convergence depends on
the smoothness of a function f(z) (f and = now real), let us consider the
two-parameter class of functions

1

feol®) = =g

Graphically, these functions have a ‘hump’ of unit height, centred at x = ¢,
with widths (and radius of curvature at the tips) proportional to 7. The
equi-spaced PS method will be just borderline converging/diverging when
the closest singularity of f¢,(z) (it has only two singularities — they are
located at x = £ + in) falls on the equipotential curve passing through
x = %1 (drawn bold in Figure 6(a)). Figure 8(a) shows these most peaked
functionsf¢ ,,(z) for different values of £ € [-1,1]. The equi-spaced PS
method is clearly much better able to resolve high curvatures near the ends
of [—1,1] than in the interior.

This issue was also discussed by Solomonoff and Turkel (1989). They
quote the closed form expression for ¢o(z,y), but select an inappropriate
branch for an arctan which arises, leading to some flawed results.

However, it is also equally clear that (in this form) the equi-spaced non-
periodic PS method is quite useless — no matter how many points are em-
ployed, it will not converge over [—1,1] for functions any less smooth than
those shown in Figure 8(a).
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Fig. 8. Functions f¢,(z) = 1/{1 + [(z — €)/n]?} with minimal 7 (i.e. maximal
curvature at the tip) such that for the equi-spaced nonperiodic PS method, there

is borderline convergence/divergence as n — oo (a), and for the Chebyshev PS
method there is convergence as o™ for a = 0.9 (b).
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Interpolation at the Chebyshev nodes will work for any £ and any n > 0.
However, if we require a ‘reasonable’ convergence rate, say o = 0.9 (i.e.
approximately a factor of 1076 for every 130 node points), the situation is
again somewhat similar, see Figure 8(b). Once more, the highest resolution
is obtained near the boundaries. This has been exploited frequently (for
example to resolve boundary layers in fluid mechanics). Note, however, that
this is not an immediate consequence of the grid being finer there (this effect
was no less prominent in the case of equi-spaced grids).

Periodic case For the periodic PS method (on [-1,1]), the formula cor-
responding to (4.1) becomes

y::l:%lna (4.2)

(related to the fact that a Fourier series converges in the widest horizontal
strip around the z-axis that is free from singularities).

General discussion The relative resolution ability of different methods
is sometimes expressed in the number of points needed per wavelength.
For a Fourier expansion, this number is 2 (Kreiss and Oliger, 1972). For
nonperiodic PS methods, it is 7 in the Chebyshev case (Gottlieb and Orszag,
1977) and 6 in the equi-spaced case (Weideman and Trefethen, 1988).

Figure 9 compares the curves given by (4.1) and (4.2) for @ = 0.5 and
o = 0.9. The ratio 2/m between points per wavelength for the periodic
and Chebyshev PS methods follows from the ratio of the y-axis intercepts
(values at z = 0) of these curves as @ — 1. (Again, this is not a direct
consequence of the fact that the Chebyshev grid happens to be 2/7 as dense
as the equi-spaced one at this location.)

In every instance of PS methods applied to functions analytic in some
neighbourhood of [—1, 1], the convergence takes the form O(a™) (discussed
so far only for interpolation but clearly true as well — with the same a - for
approximations to any derivative). This rate distinguishes spectral methods
from FD and FE methods (where the rate for a pth-order method would
be O(1/nP); polynomial rather than exponential convergence). Whether
or not there happens to be any classical family of orthogonal polynomials
associated with the PS method is quite irrelevant.

We can only indicate one starting point here for analysis comparing FD
against PS methods. Assume periodicity and NV + 1 grid points spaced
h = 2/N apart within the period [—1,1]. The range of Fourier modes
e“? that can be represented on this grid is —wmax < w < Wmax, Where
Wmax = 7/ h.

Any mode w outside [—wmax, Wmax) Will, on the grid, appear equivalent to
a mode within this range — an ‘aliasing’ error. How much is present of the
different modes depends on the regularity of the function we approximate.
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Fig. 9. Comparisons of domains in complex z-plane which need to be free of singu-
larities to obtain convergence rates o™, @ = 0.5 and o = 0.9. Chebyshev method:
ellipses with foci 1; equation (4.1). Periodic PS method: horizontal strips around
the z-axis; equation (4.2).

Suppose we want to approximate d/dz. For a mode e'“, the exact answer
should be

—elwT — jue
dx

iwzx

With FD2, we get

) w(z+h) _ piw(z—h) : h . .
Daeios = & — = il = if(2,w, heT.  (43)
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Factor e'“* Gets
n/h + Multiplied with

2

N\ 120th Order

¢

& 20th Order

6th Order
- 4th Order

2nd Order

|
~ Omax

—

Wmax = n/h

2nd Order:
(sin wh)/h

Fig. 10. Multiplicative factors f(p,w, h) arising when the pth-order FD approxima-
tion for d/dz is applied to e'«<.

For the centred pth-order FD scheme (p = 2,4,6,...), we get similarly

1.
sinwh 2220 (k)2

D (2k + 1)!

k=0

f(p,w,h) = 2%¥ (sin Lwh)?* 3 . (4.4)

Figure 10 compares f(p,w,h) to the exact result w. For p = 2, only a
fraction of the Fourier modes present are treated even nearly correctly.

As p — o0, convergence is seen to occur as in a Taylor expansion -
the number of correct derivatives at the origin is the same as the order of
the FD scheme. It can make sense to give up some of the (unnecessarily
high) accuracy for low w (i.e. for long waves) in exchange for keeping the
accuracy within some uniform tolerance over a wider w range (or over a
specific narrow frequency band relevant to a particular application). Such
types of compact FD schemes can be very eflfective, for example in three-
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dimensional seismic modelling, see Holberg (1987), Mittet et al. (1988) and
Kindelan et al. (1990).

Solomonoff (1994) presents still another approach to generate FD schemes
that are optimized in application-specific ways (i.e. rather than being de-
signed to be exact for polynomials of as high orders as possible). He notes
that such schemes can be made less vulnerable to the Runge phenomenon.

Lele (1992) displays figures similar to Figure 10, also including various
compact schemes that attain high orders by means of including additional
unknowns at the grid points (for example the values of derivatives as well
as function values).

In the p = oo limit (the periodic PS method), the only errors are ‘alias-
ing’ errors. Due to variable coefficients and/or nonlinearities, high Fourier
modes outside the range [—wmax, Wmax| are generated and then possibly mis-
treated. One approach to controlling such errors is to apply weak damping
(dissipation). However, as we will see, anybody who views ‘aliasing’ only as a
source of errors is missing out on one of the most important (and intriguing)
strengths of PS methods.

4.2. Convergence of PS methods for nonsmooth functions

The PS method sometimes performs very well even in the cases of nonsmooth
functions. Several of the major PS applications depend on this (turbulence
modelling, weather forecasting, seismic modelling etc.).

As an illustration, let us consider the one-dimensional acoustic wave equa-
tion

-1<z <0,

0<x <1, (4.5)

{ Ut ="te where ¢(z) = {

v; = A(x)ug

[N TR o

periodic outside |1, 1].

We will be using grids such that 0 and +1 fall half-way between grid
points, thus saving us from having to decide on the values of ¢(z) at these
locations.

In each of the intervals [—1,0] and {0, 1], equation (4.5) supports solutions
travelling to the right (=) and to the left (<) of the following forms:

u(z,t) = —v(z,t) = . u(x,t) = —2v(z,t) =
In {-1,0] { u(z,t) = +ov(z,t) <« in [0,1] { u(z, t) = +2u(z,t) <.

We choose as initial condition
u(z,0) = 2v(z,0) = exp(—1600(z — 1)?).

Figure 11 shows the time evolution for u(x,t) — the one for v(x,t) is quali-
tatively similar. After the pulses have hit the interfaces at t =0 and z = 1
numerous times — on each occasion generating two outgoing pulses (trans-
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Fig. 11. Time evolution of u{z,t) solving equation (4.5).

mitted and reflected) — the analytic solution at ¢ = 7 consists of just three
pulses.

The periodic second- and fourth-order FD and the PS methods give at

= 7 the results shown in Figure 12.

No numerical smoothing has been applied in any of these cases. The time
integration was performed with leap-frog (centred second-order FD in time)
with a sufficiently small time step that the errors which are seen are all due
to the spatial discretizations. Many other ODE solvers could have been used
equally well (such as Runge-Kutta, Adams Bashforth etc.).

We can note the following points.

e  Already with N = 64, the PS method has retained considerable ac-
curacy (in spite of the initial pulse being only about two grid points
wide). For the higher values of N, the performance of the PS method
is nearly flawless, and far superior to that of the FD methods.

e  One might have expected the PS method to develop Gibbs-type os-
cillations. It is instead the FD methods which develop problems with
the high modes. The generally used remedy against spurious high-
frequency oscillations is to apply some viscous damping — preferably
as little as possible to avoid smearing out the pulses themselves. This
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example shows that, for the PS method, often very little suffices (to
use none — as in this example — is unnecessarily risky).

The difference between the methods lies not so much in the size of the
local errors, as in how these accumulate or cancel over time. In the case of
the PS method, relatively large errors cancel systematically.

In Fornberg (1987, 1988a), many similar tests were carried out for the
two-dimensional elastic wave equation (a system of five first-order equations
supporting both pressure and shear waves; see Figures 17 and 24) - with
very similar results.

If Gibbs oscillations do arise in PS calculations, spectral pointwise accu-
racy can still sometimes be recovered in smooth regions by postprocessing.
The paper ‘Don’t suppress the wiggles — they’re trying to tell you some-
thing’ (Greshko and Lee, 1981) discusses this and points out that viscous
damping during a calculation (even when applied with good intent) can lead
to an irretrievable loss of information. Although the convergence for step
solutions is bad in most common norms (Majda et al., 1978), Abarbanel
et al. (1986) note this need not be the case for certain ‘negative Sobolev
norms’. Spectral accuracy of ‘moments’ provide information that can be
used to restore Gibbs-affected solutions.

For many nonlinear equations, the discontinuties that arise are not of
‘shock’-type but rather like contact discontinuities which are quite passively
transported around in a linear fashion (for example the case in direct sim-
ulations of turbulence and — to a lesser extent — in weather forecasting). In
such cases, it may suffice to add very little viscosity and rely on the method’s
ability to handle linear situations.

The problem with more severe nonlinearities is primarily that they can
introduce couplings, disrupting the delicate cancellation process on which
the PS method for nonsmooth functions is dependent. One idea is to add
some more viscosity (just enough to be able to exploit the PS method’s
power in the case of smooth solutions but not so much that the solution itself
gets too severely affected). Spectrally accurate solutions can sometimes be
obtained in this way even for shock problems. Different versions of this
idea have been proposed. One is the ‘Spectral Viscosity Method’ (Tadmor,
1989). Further discussions on this and similar methods can be found in Cai
et al. (1989, 1992), Tadmor (1990, 1993) and Maday et al. (1993).

4.8. Differentiation matrices

For both computational and theoretical purposes, it is often convenient to
collect all the weights for the approximations at the grid points in a ‘differ-
entiation matrix’ (DM; cf. Sections 2.3 and 3.4). Finding the derivatives of
a vector of data becomes a matrix x vector multiplication.

The relative efficiencies of straightforward matrix x vector multiplications
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(O(n?) operations) versus FFT-based Chebyshev recursions (O(n logn) op-
erations) have been compared many times. The estimates for the point of
break-even ranges at least from n = 16 (Canuto et al., 1988) to n around
100 (Taylor et al., 1984) — the point can be higher still for vector and parallel
machines. Furthermore, Solomonoff (1992) shows how a restructuring of the
matrix x vector multiplication for DMs can nearly double the speed of this
approach.

The ‘Fast Multipole Method’ achieves an O(nlogn) operation count for
arbitrary node distributions (Boyd, 1992). However, the proportionality
constant is much higher than for FFTs — the approach appears not to be
competitive in the present context.

Beylkin et al. (1991) describe a wavelet approach for converting between
finite Legendre and Chebyshev expansions — but again, with a large constant
in the O(nlogn).

Figures 13(a)-(d) illustrate what the DMs look like for the second deriva-
tive in the case of n = 20 (i.e. 21 grid points if both ends are included, 20
within the period for periodic problems). Figure 13(a) shows the (periodic)
stencil [I —2 1]/h? and (b) the periodic PS matrix; (c) and (d) show the
nonperiodic equi-spaced and Chebyshev matrices (v = 0 and 0.5 respec-
tively). Large elements are seen in the top and bottom rows (corresponding
to approximations near the boundaries).

For nonperiodic problems, the algorithm in Section 3.1 (code in Ap-
pendix B) can be used to generate DMs very conveniently. In the PS case:

Specify size of grid

PARAMETER (N=... , M=... ) and highest derivative
DIMENSION X(0:N),C(0:N,0:N,0:M),DM(0:N,0:N,¥)
DO 10 I=0,N
10 D) = ... Specify the grid points
DO 20 I=0,N
CALL WEIGHTS (X(I),X(0),N,M,C)
DO 20 L=1,M
DO 20 J=0,N
20 DM(I,J,L) = C(J,N,L) DM(*,%,L)

contains now the DMs
for the Lth deriv.,
..... L=1,2,...,M.

The computer time taken generating DMs is seldom critical. However, if
this has to be done many times, the code above should not be used (since
it fails to exploit the fact that all the separate calls to WEIGHTS are based
on the same grid — some intermediate quantities need not be recalculated
repeatedly).



Jifferentiation matrices for
ent): (a) second-order FD,
< 10%); (d) PS, non-periodic

approximations to d*/dz?, p =
periodic (200.); (b) PS, periodi

» Chebyshev (17 x 10%).

d

20 (in parentheses, maximum magnitud

(331.); (c) PS, non-periodic, equi-spa



A REVIEW OF PSEUDOSPECTRAL METHODS 235
With

n n

= [ (zx — zi), Fi(z)= Hm—xl

ik ik
Lagrange’s interpolation formula becomes

= > f(zi)Fi(x).
k=0

Relatively straightforward manipulation of this (Nielsen, 1956, pp. 150-154)
allows the elements of D! to be computed in, to leading order, only four
operations per element:

a4 .
: j#k
. ak(zj — k)
D = 1
7k = k.
Exk*%’ 7

DMs for higher derivatives can, in this case, be obtained as matrix powers
of D!. A much less costly recursion is also available — DP can be obtained
from DP~! in only five operations per element (p = 2,3,...) (Huang and
Sloan, 1993, Welfert, 1993). Welfert also notes:

e  The PS literature contains many instances of authors assuming the
relation DP = (D')? when it does not hold (for example it fails for
the periodic PS method if the number of points is even). A sufficient
condition for this relation is presented.

e  Closed form expressions for Djl-,c and Df-k become particularly simple
for many cases of orthogonal polynomials. A comprehensive list has
been collected.

Rounding error propagations within different methods for calculating Cheby-
shev DMs are discussed by Breuer and Everson (1992).

4.4. Evgenvalues of differentiation matrices

A major difficulty with nonperiodic PS methods is that their DMs tend to
have very large spurious eigenvalues (in addition to their physically rele-
vant ones). This adversely affects time stepping techniques (to be discussed
in Section 4.5). Many of the special techniques in Section 5 are designed
to (partially) overcome this. In order to provide a background for these
discussions, we will describe some typical eigenvalue (EV) distributions.

Example 1 Periodic PS; advection equation u; = u,.
The DM is derived explicitly both in Sections 2.3 and 3.4 (cf. equation
(3.3)). The DM is anti-symmetric; its eigenvalues are equi-spaced on the
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Fig. 14. Eigenvalues of Chebyshev DMs for an advection equation.

imaginary axis between —N(x/2)i and +N(7/2)i (when N is odd - very
minor differences for N even).

Example 2 Chebyshev PS; advection equation u; = ugz, u(l) =0.

Figure 14 shows the EVs for V = 8, 16, 32 and 64. Although most of the
EVs converge to a curve in the left half-plane between —i/V and +iN, a few
spurious ‘outliers’ diverge at rates proportional to N.

Trefethen and Trummer (1987) note that the small (physical) eigenvalues
for large values of N exhibit a very large sensitivity to rounding errors
(however, still leaving them distributed along very distinct paths).

When the grid points are instead distributed as the zeros of Legendre poly-
nomials Ly (z), Dubiner (1987) noted that the spurious outliers were absent
in this model problem. However, the EV sensitivity remains large (and EVs
alone fail to fully describe stability issues as the DMs are highly nonnormal
matrices). It is questionable whether use of Legendre polynomials offers any
practical advantage (Trefethen, 1988).
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Fig. 15. Magnitudes of eigenvalues of PS DMs (for equi-spaced and Chebyshev
grids) compared to analytic eigenvalues; N = 40.

Example 3 Chebyshev and equi-spaced nonperiodic PS; heat equation
Ut = Uzg, u(E£l) =0.

The continuous problem u,,; = Az, u(£1) = 0 has the EV A\, = —(kn/2)?,
k =1,2,.... The EVs of the Chebyshev DM for u,, are all real and negative
(Gottlieb and Lustman, 1983). In the case of N = 20, this DM is the
matrix in Figure 13(d) with the first and last rows and columns removed.
Figure 15 compares the magnitude of the EVs with those for the equi-spaced
nonperiodic PS method (cf. Figure 13(c); in this case, many higher EVs are
complex) and the exact ones. The portions 2/7 and 1/3 of the EVs are
spectrally accurate in the two cases (cf. the numbers of points per wavelength
2, 6 and ™ mentioned in Section 4.1).

PS methods can also be devised for infinite domains. For eigenvalues
of ‘Hermite’ and ‘rational spectral’ PS DMs, see Weideman (1992). Other
such cases include Laguerre eigenvalues (Funaro, 1992) and sinc eigenvalues
(Stenger, 1981).
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4.5. Time-stepping methods and stability conditions

Stability (meaning that the numerical solution remains bounded up to a
fixed time T as time and space steps At and Az — 0) is essential because
of the Lax Equivalence Theorem which can be stated as follows.

Lax Equivalence Theorem For a well-posed linear problem, a consistent
approximation converges if and only if it is stable.

Stability analysis for spectral methods is simple in only one case — the
Fourier PS method for a periodic constant coefficient problem. The DMs
are cyclic with known eigenvalues. Assuming again for simplicity n = 2m+1,
the eigenfunctions (in one dimension) are e¢'“®, w = —m, ..., m with eigen-
values 8/9z « inw, 0%/02® — —7%w? etc., (w = —m,...,m). Had we
instead used second-order FD in space, we would have obtained 8/0x <
isin(rwAz)/Az (cf. (4.3)), 8%/0x? « —4(sin(rwAz))?/Ax? etc. The sta-
bility restrictions when time stepping (of the forms A¢/Az < constant and
At/Az? < constant respectively) therefore have constants 1/7 and 4/7?
times those that arise with second-order FD methods (i.e. they are hardly
any more severe).

For higher-order FD methods, similar ratios can be read from the max-
imum values of the curves in Figure 10 and their generalization to higher
derivatives (the equivalents of (4.4) are given in Fornberg, 1990a).

Stability conditions like At/Ax < constant and At/Az? < constant are
normally not restrictive in connection with spectral methods. With, say, a
fourth-order Runge-Kutta method in time and a better-than-eighth-order
PS method in space, At/Az? < constant is needed anyway to make the
temporal accuracy match the spatial one. However, conditions on At/Ax?,
p > 2 will arise in many nonperiodic PS cases. One of the main issues in
designing (nonperiodic) spectral methods is to circumvent these.

For more realistic problems, several complications arise (both for FD and
for PS methods):

. For variable coefficients or nonlinearities, stability for all problems
with ‘frozen’ coefficients is neither necessary nor sufficient for stability
(Kreiss, 1962, Richtmyer and Morton, 1967).

e  With boundaries present, local mode analysis for the interior needs to
be complemented by ‘GKS’ analysis at the boundaries (Kreiss, 1968,
1970, Gustafson, Kreiss and Sundstrom, 1972); for simplified versions
of this, see Trefethen (1983), Goldberg and Tadmor (1985)).

Additional problems are more specific to PS methods:

e  One needs to distinguish between ‘Lax stability’ (fixed T and At — 0)
and ‘eigenvalue stability’ (fixed Az and At as T — 00). For the highly
nonnormal DMs that arise from nonperiodic PS methods, large growths
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can initially arise if the norms are large even if all eigenvalues fall within
(or on) the unit circle (cf. the Kreiss matrix theorem, in Richtmyer and
Morton (1967)).

e  PS methods can be unstable even when the corresponding FD meth-
ods of increasing orders are all stable. Tadmor (1987) addresses this
phenomenon in connection with a linear model equation u; = c(x)us.
Reddy and Trefethen (1990) use ‘pseudospectra’ to provide further in-
sight into this and similar phenomena.

‘Energy methods’ provide a powerful general tool for PS analysis, e.g.
Gottlieb et al. (1980, 1987, 1991). However, due to their technical complex-
ity, we restrict the discussion here to eigenvalue stability. Although limited,
it can still provide useful guidelines for selecting time integrators.

The most common time-stepping approach is the ‘Method of Lines’ (MOL)
which amounts to discretizing in space only and then applying a ‘packaged’
ODE solver (based, for example, on Runge-Kutta or backwards differentia-
tion) to the resulting system of ODEs.

This approach allows the ODE solver to be developed and analysed sep-
arately from the spatial discretization method. The user need not be con-
cerned with many tedious issues like starting techniques for multi-step meth-
ods, time step and order adjustments etc.

For constant coeflicients, the MOL gives rise to a system of ODEs

SR EIENG

where A is the differentiation matrix for the approximation (which we now
assume to be diagonalizable). For a first cut at assessing what kind of ODE
package to select, the stability regions of the time integrator have to be
compared with the eigenvalues of A.

Stability regions An ODE solver is stable for At and (complex) X if the
numerical solution to u; = Au does not grow with ¢. It is called A-stable
if it is stable for all A in the negative half-plane (the ideal situation — this
matches the same property of the analytic solution u(t) = e**). A-stability
can seldom be achieved for methods of high accuracies. (cf. the ‘Dahlquist
barriers’ (Dahlquist, 1956, 1985)). Instead, for most methods we find that
AAt must lie within some smaller domain than the full left half-plane. If
any eigenvalues A of A happen to be large in magnitude, this restricts At.

Example Forward Euler:

v(t + At) = v(t) + Atd(t) =
o(t + kAt) = (1 4+ AA)Fu(t) =



240 B. FORNBERG AND D. M. SLOAN

Stable if |1 + AA¢| < 1 = stability region (values of AAt giving no growth)
is a circle with radius 1 centred at —1.

However, very low accuracy and no stability coverage along the imaginary
axis makes this method very unattractive.

Commonly used ODE solvers represent compromises between low opera-
tion counts, high accuracies and large stability domains. They include many
Runge-Kutta (RK) schemes, Adams-type methods and, for ‘stiff’ problems
(with some eigenvalues far away in the left half-plane) BDF methods. For
discussions on ODE solvers, see, for example, Gear (1971), Shampine and
Gordon (1975), Lambert (1991), Hairer et al. (1987), Hairer and Wanner
(1991). Many stability domains are illustrated in Sand and @sterby (1979).

5. PS variations/enhancements

Up to this point, we have described ‘basic’ PS implementations. However,
many variations are possible, offering advantages in different respects. In
this section, we discuss a few of these.

5.1. Use of additional information from the governing equations

This idea (like most others) is best described through the use of examples.
To use it the problem must first be manipulated analytically (for example by
repeated differentiation) to provide more information than is immediately
available from its original formulation.

Example 1 Exploiting additional derivative information at the boundaries
for the eigenvalue problem u,, = Au, u(£1) = 0.

Since u(%1) = 0, clearly also u”(£1) = 0 and «""(£1) = 0 (for this exam-
ple, we ignore that this pattern continues indefinitely and that u becomes
periodic). The information on «” and u"” can be exploited in different ways:

A:  Reduce the largest spurious EVs (cf. Figure 15).

Each ‘extra’ boundary condition has a corresponding (one-sided) differ-
ence stencil. From each row of the DM (as shown in Figure 13(c) and
(d)), we can subtract any multiple of these stencils. These multiples
can be choosen to minimize the sum of the squares of the elements of
the resulting DM. As shown in Fornberg (1990b), this procedure much
improves the conditioning of the DM without any degradation in its
spectral accuracy:

= Using only «”(+1) = 0 and u"”(%) = 0 reduces the largest matrix
elements of the DMs shown in Figures 13(c) and (d) (edge elements
not included) to about 500 — down from about 500000 and 7000
respectively!).
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= Each time an ‘extra’ boundary condition is applied to a Chebyshev-
type approximation, the largest (remaining) spurious eigenvalue
gets changed to ezactly zero.

B: Increase the accuracy of the computed EVs.
Given k extra relations (for example information at the boundaries),
we can proceed as follows:

1 Introduce k new fictitious grid points (anywhere — inside or outside
the domain).

2 Find the N + 1 stencils for u,, which are accurate at the original
grid point locations zg,x1,...,2zx5 respectively, but which extend
also over the fictitious points.

3 Find the k stencils which express the k extra pieces of information
(again extending over all grid points — original and fictitious).

4 Add/subtract multiples of these k stencils from the ones calculated
in Step 2 — so that the weights at all the fictitious points are elim-
inated.

The resulting stencils for u,, become exact for all polynomials of degree
N + k which take prescribed values at x¢,x1,...,zx5 and satisfy the
k extra relations. They are therefore more accurate, but still no more
costly to apply than straightforward PS approximations also extending
over xg,Ip,...,rN (these would be exact only for polynomials up to
degree N).

The idea of introducing points outside a boundary and then elim-
inating them again using boundary conditions is often used with FD
methods. The PS case is remarkable in that the location of these (tem-
porary) points turns out to have no influence at all on the final result
(apart from rounding errors). In this PS case, they offer a very conve-
nient way of generating stencils satisfying ‘side conditions’ without the
need for any additional analytical devices.

Another boundary situation for which large improvements can be achieved
is the treatment of the origin in polar coordinates. This is discussed further
in Section 5.6. The example below (from Fornberg (1994)) demonstrates
this idea in a case of axial symmetry.

Example 2 Exploiting symmetry at a boundary.
Bessel’s equation arises from Poisson’s equation in the case of axial sym-
metry. Consider its eigenvalue problem

n?

1
'+ ~u' — u=-du, n=0,1,..., u(0) bounded, u(1) = 0.
T T

The exact eigenvalues A, x, k=1,2,... satisfy Jo(y/An k) =0.
We compare two approximation methods:
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1 Note that
n=0 4(0)=0
n#0 u(0)=0

and use straightforward Chebyshev approximation on [0,1]. Grid points
are located at 7y, = (1 — coskn/N)/2, k =0,1,...,N.
2 Note that
n even u(r) even
{ nodd wu(r) odd.

Consider FD stencils extending over [—1,1], but use symmetry to re-
duce actual calculations to within [0,1]. Grid points are located at ry =
sinkn/2N, k=0,1,...,N (i.e. no clustering at r = 0).

Figure 16 compares the accuracies in the numerical EVs obtained through
these two methods for n = 7, k =1 (A7 = 122.9; cf. Gottlieb and Orszag
(1977, pp. 152-153)). The values for method 1 are taken from Huang and
Sloan (1993a).

Further variations of boundary implementations are discussed by Canuto
and Quarteroni (1987) and Funaro and Gottlieb (1988).

Morals When using PS methods, always consider whether the FD view-
point can offer any advantages (in accuracy, simplicity, flexibility, etc.)

The fundamental reason for clustering grid points at the ends of an interval
is to compensate for the large error terms in one-sided approximations. The
more information we can exploit at boundaries, the less we should cluster.

5.2. Use of different PS approzimations for different terms in an equation

When a single variable appears more than once in an equation, it is normally
approximated in a similar way at each instance. However, Huang and Sloan
(1993b,c) note two situations when it is better to use different types of PS
approximation.

Example 1 Solve the singular perturbation problem
ew +u' =1, ze[-1,1], 1>e>0.

Straightforward centred second-order FD approximations for both «' and
u” give an oscillatory solution with O(1) errors across [—1,1] for any N when
€ < 1/N. Approximating u, by the one-sided FD stencil [u(z + k) — u(z)]/h
reduces the errors to O(1/N). When using Chebyshev PS approximations,
we can similarly approximate u’ with stencils based on all grid points but
the one at x = —1. In the limit of € — 0, this gives spectral accuracy across
[—1,1] (rather than O(1) errors).

For another idea to solve this problem with a PS method, see Eisen and
Heinrichs (1992).
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Fig. 16. Errors in eigenvalue A7 ; for Bessel’s equation when approximated using
two different strategies.

Example 2 Solve the eigenvalue problem v’ + 4u"” = A", x € [-1,1],
(1) = u'(£1) = 0.

Problems similar to this arise, for example, in linearized stability analysis
in fluid mechanics. Spurious EVs denote in this case EVs appearing incor-
rectly in the right half-plane, suggesting physical instabilities that do not
exist.

If we approximate all derivatives of u on a Chebyshev grid, incorporating
u/(+1) = 0 as in Example 1, Part B, Section 5.1, we will get spurious EVs.
However, ignoring v/(+1) = 0 when approximating u” overcomes this.

In both these examples, variable coeflicients would have added no compli-
cations (as is usually the case for PS methods - in sharp contrast to spectral
Galerkin or Tau methods).



244 B. FORNBERG AND D. M. SLOAN

5.3. Staggered grids

When using an FD method, it is customary to compute values for each
unknown at each grid point. Figure 17 illustrates an alternative, which can
be employed quite frequently. Even for equations with only one unknown
variable, a similar staggering can sometimes be used effectively from time
level to time level. The idea is to gain accuracy — derivative approximations
at ‘half-way’ points are often much more accurate than at grid points.

For the first derivative:

Second-order Leading error ~ Ratio of error
accuracy terms
Reg. flz)= {3f(c—h

+f(a:+h)}/h +LRZfM(z) ...
Stag. f'(x)=  {f(z - ih)
+if(z+ 1R)}/h  +LREf"(z)...

Fourth-order accuracy

Reg. f'(z)= {&f(z—2h)
—2f(z—h)
+2f(z+h)
—Lf(z+2h)} /R — R (a) +

Stag. f'(z)= {4f(z—1h)
—$f(z —}h)
+3f(a+ i)
—Lfz+3R)}/h —ZRf(z)+... & =~0.141

640

I
<
)
Tt

N

For approximations of order p, the ratio of error terms turns out to be

p! 2~ 2
{2”{( }2} T op

Since the periodic PS method can be viewed as the limit of p — oo, this
suggests that the idea of staggering would also be advantageous in that case.

Another suggestive argument follows from comparing the weights in the
stencils. Figure 18(a) shows the magnitudes of the weights for increasingly
accurate approximations to the first derivative as is also displayed in the
right half of Figure 2. In the limit, they become (—1)"/v, v = 1,2,....
For the staggered approximations, the limit is much more local in nature:
(—=1)*1/2/mp? v = 1,85 ... . Since the derivative is a local property of a
function, a more compact approximation makes more sense than one relying
on extensive cancellation of distant contributions.

For nonperiodic problems, staggering can be achieved, for example, by
using grids based on Chebyshev extrema (as usual) and Chebyshev zeros.

Staggering turns out to be advantageous for odd derivatives (first, third,
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Fig. 18. Magnitudes of weights for increasingly accurate approximations to the first derivative on regular and
staggered grids (right halves of stencils displayed).
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etc.) whereas regular grids are better for even derivatives. For analysis and
references on grid staggering in connection with high-order methods, see
Fornberg (1990a).

5.4. Preconditioning

The large spurious eigenvalues in many PS DMs can make explicit time
stepping methods very costly (forcing the use of extremely small time steps).
Implicit methods often have unbounded stability domains, but they require
the solution of a full linear system every time step.

The idea of preconditioning works in any number of dimensions, but is
easiest to illustrate in one dimension.

Example Preconditioning for a Chebyshev PS solution of a two-point
boundary value problem «”(r) = f, where u(£1) and f are given.

Chebyshev PS discretization (viewed as a FD method) gives rise to a
linear system Cu = f, where C is the Chebyshev DM for d?/dz? (as shown
in Figure 13(d), but with the edge rows and columns removed). C is neither
symmetric nor diagonally dominant — standard iterative techniques will not
converge.

Let F be the second-order FD DM based on the same Chebyshev grid
(with elements obtained using the algorithm in Section 3.1). Since F' is tri-
diagonal, it is easily inverted (in higher dimensions, one can, for example,
use alternating direction arrangements for the tri-diagonal matrices). The
system to be solved can be written as [F~!C]u = g, where g = F~1f. The
matrix F~1C is illustrated in Figure 19. Any standard iterative technique
can be used to rapidly obtain the (spectrally accurate) vector u.

For matrices of this form (near-symmetric, diagonally dominant), conver-
gence of some methods improve if the ratio of largest-to-smallest eigenvalues
is lowered. For F~1C, Apax/Amin — 372 as N — oo (Haldenwang et al.,
1984). Using higher-order FD methods, this ratio can be lower still (Phillips
et al., 1986) but savings may be off-set by a higher cost of applying F~*. In
contrast, we can note that for the (nonsymmetric, nondiagonally dominant)
matrix C, Amax/Amin grows like O(N*).

For odd derivatives, FD preconditioning normally requires the use of stag-
gered grids. This is discussed for Chebyshev methods by Hussaini and Zang
(1984) and Funaro (1987). Mulholland and Sloan (1992) considers FD pre-
conditioners for staggered approximations to %/9x3 (applicable, for exam-
ple, to the Korteweg—de Vries equation).

FE-based preconditioners have been discussed by Canuto and Quarteroni
(1985), Deville and Mund (1985) and Canuto and Pietra (1987). General
references on preconditioning include Canuto et al. (1988) and Boyd (1989).
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Fig. 19. Display of the matrix F~!C resulting from second-order FD precondition-
ing of the Chebyshev DM C for d?/dz? (with n = 20).

5.5. Improved conditioning through change of variable

All the approximations to the derivatives that we have considered so far
(for nonperiodic problems) have been based on differentiating interpolating
polynomials. The difficulties at boundaries have been linked to large weights
in one-sided stencils — in turn a consequence of the rapid growth of high-
degree polynomials at increasing distances from the origin.

Kosloff and Tal-Ezer (1993) proposed to change first the independent
variable x into y through z = arcsin(ay)/arcsin(a) (both z and y € [-1,1],
the parameter o € [0,1]). In the governing equations, 8/9x needs then to
be replaced by

arcsin{a) 0
—_ 1 - 2
- (oy) o

(and similarly for higher derivatives). Applying a standard Chebyshev PS
method in the y variable corresponds, in the x variable, to working with
nonpolynomial basis functions.

In the limit of & — 0, y is equal to z, and we have the regular Chebyshev
PS method. As @ — 1, the x grid approaches uniform spacing. Close to this
limit, the Chebyshev polynomials (in the y variable) have, in the z variable,
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become stretched to resemble trigonometric functions. This reduces the
spurious EVs. In Example 2 of Section 4.4, they decrease from O(N?) to
O(N). Figure 20(a) shows how they move in this case when « increases
from 0 (as in Figure 14) to 0.9. Figure 20(b) shows the effect this has on
the accuracy of different Fourier modes.

Compared to the standard Chebyshev PS method, this procedure offers
reduced spurious EVs, better conditioned DMs (much closer to being normal
matrices) and a wider range of accurately treated Fourier modes in exchange
for less accuracy for the lowest Fourier modes.

If we had just moved the grid points towards equi-spaced locations without
the accompanying change of variable, we would suffer all the problems of the
Runge phenomenon (cf. Figures 3 and 8(a)) — disastrous growth of condition
number and an inability to approximate anything but extremely smooth
functions.

The properties of this method are similar to those of medium-to-high order
FD schemes — no conclusive efficiency comparisons have yet been carried out.

The idea of changing variable to improve the Chebyshev PS method was
proposed earlier by Bayliss et al. (1989) for quite a different purpose - to
achieve additional grid clustering at interior Jocations where extra resolution
might be needed (see also Bayliss and Turkel (1992)).

5.6. PS methods in polar and spherical coordinates

Separation of variables for the Laplacian operator in three-dimensional po-
lar coordinates leads to a class of functions called ‘spherical harmonics’ —
combinations of trigonometric and Gegenbauer polynomials. These offer a
complicated (but workable) base for spectral methods. For an overview of
this approach, see, e.g., Boyd (1989, Ch. 15).

An alternative is outlined below, for simplicity first for polar coordinates
in the plane. Instead of generating PS methods from some set of basis
functions, we start from the basic FD premise that derivatives in different
spatial directions can be approximated entirely separately from each other.
In each direction, we thus use the most appropriate FD scheme of maximal
order (typically one-dimensional Fourier or Chebyshev PS approximations).

Polar coordinates A polar coordinate system on the unit circle can be
obtained through

{xZTC(.)SQ 0<r<1, - <0 <.
y=rsinf

At r = 0, all 6 positions collapse into one physical grid point — there-
fore requiring only one governing equation. At this location, one can use
a Cartesian z-y-based FD stencil (free of the singularities that might have
been introduced by the polar coordinate formulation).
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One might be tempted to proceed by using Fourier PS in € and Chebyshev
PS in . A much better alternative is to consider -1 <r <1,0< 0 <«
(instead of 0 < r <1, —w < § < 7). There is then no longer any reason to
refine the grid in the r direction near r = 0:

saves grid points;

e  higher-order accuracy of PS stencils in r directions (since they extend
over twice as many grid points — cf. Example 2 in Section 5.1);

e less severe two-dimensional point clustering near the origin;

e  high degree of smoothing in the 8 direction for small r values provides
favourable CFL (Courant—Friedrichs-Levy) stability conditions with-
out damaging overall accuracy;

e  Fourier PS available as before in the 8 direction.

Spherical coordinates We consider a surface ¢, § — grid as shown in Figure
21. The dotted arrows indicate how periodicity can be implemented in both
¢ and 0. The observation for two-dimensional coordinates carry over;

e  for 6 near £, polar stability can be enhanced by smoothing in the ¢
direction;

e an r direction can again be added as in two-dimensions (with —1 <
r <1 and halving the angular domain in case r = 0 is in the region of
interest).

This PS method has been tested for convective flow in different directions
over the surface of a sphere (Fornberg, 1994). Its performance turns out to
be entirely unharmed by the presence of polar singularities — the accuracy
is as high as is typical for one-dimensional periodic problems.

6. Comparisons of computational cost — FD versus PS
methods

High-order FD and the PS methods are particularly advantageous in cases
of high smoothness of solution (but note again the discussion in Section 4.2),
stringent error requirement, long time integrations and more than one space
dimension.

Since the PS methods for periodic and nonperiodic problems are quite
different, they will be discussed separately.

6.1. Periodic problems

To obtain more precise insights into how the formal order of a method affects
the accuracy, we consider the model problem du/dt+ du/dx = 0 on [—1,1],
integrated in time from 0 to 2 (the time it takes the analytical solution
u(z,t) to move once across the period). The data in Figure 10 can be recast
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Fig. 20. Grid arrangement and periodicities for spherical coordinates.

into Figure 22 (for details, see Fornberg, 1987). The following explains how
to interpret this figure.

Using an accurate time integrator, Fourier modes in the numerical solution
of this equation will develop phase but not amplitude errors. If a phase error
is 7, that mode will have the wrong sign and will not add any accuracy to
a Fourier expansion. Here we consider (somewhat arbitrarily) a mode to be
‘accurate’ if its phase error is less than 7 /4.

A second-order FD method with Ngp = 500 (i.e. 500 grid points in the
spatial direction) is seen to give the same accuracy (have the same horizontal
position in the figure) as a fourth-order FD method with Ng =~ 160 and a
PS method with Ng = 32. The numbers on the axes indicate: horizontally
(approximately location ‘16’ in the example above), modes up to sin(167z),
cos(16mx) are ‘accurate’ at the end of the integration; vertically, in the
different cases the number of grid points needed per wavelength.

The governing equations for the test case shown in Figures 23(a) and
(b) are those in Figure 17 (here using a ‘regular’ grid). A sharp ‘pressure
wave’ pulse is sent down through an elastic medium which carries both
pressure and shear waves with lower velocities near the centre of the domain.
Following focusing and the subsequent development of a cusp-shaped wave
front, Figure 23(b) shows second- and fourth-order FD and PS results. In
the three cases, comparable accuracies are obtained on grids of densities
512x512, 128x128 and 32x32 respectively (in quite good agreement with
the discussion just above). With the PS method implemented by FFTs, the
relative computer times scale as 20:2:1. In three dimensions, these numbers
would become 300:8:1. For memory requirements, the differences become
even larger: 256:16:1 in two dimensions and 4096:64:1 in three dimensions.

The largest cost-benefits from high-order methods arise in two and three
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Fig. 22. Relations between grid densities and obtained accuracies when applying
different methods to a model problem.
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Fig. 23. (a) Contour curves for the variable medium and schematic illustrations
of the initial and end states of the test runs. (b) Numerical results for the test

problem (variable f displayed). Comparison between different methods and grid
densities.
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dimensions. Hou and Kreiss (1993) note that in one dimension and with
near-singular solutions (for example with thin internal layers to resolve),
fourth- and sixth-order FD methods sometimes match (or even exceed) the
PS method in efficiency.

6.2. Nonperiodic problems

In this case it is more difficult to provide any single (and still simple) test
example that is general enough to be meaningful. Passing from periodic
to nonperiodic problems, PS methods encounter many more problems than
(low-order) FD methods:

FD: Some more care is needed in stability analysis.

PS: Grid clustering is necessary near edges. This leads to

— conditioning and stability problems (especially notable when time
stepping),

— need for preconditioners,

— the prevalence of spurious EVs, especially for high derivatives (cf.
Merryfield and Shizgal (1993), on the KdV equation - in sharp
contrast to a very favourable situation for periodic PS methods
(Fornberg and Whitham, 1978),

— reduced ability to resolve Fourier modes (need 7 versus 2 points
per wavelength).

Formal order of accuracy is the same as the number of grid points —
not infinite as in the periodic case (but the significance of this ‘philo-
sophical” difference is unclear).

Performance in nonsmooth cases is less well known.

The many successes of Chebyshev-type PS methods in a wide range of
applications prove that the added complications are often outweighed by
the advantage of exponential accuracy.

One convenient way to keep many options open when developing applica-
tion codes is to write a FD code of variable order of accuracy on a grid with
variable density (using the algorithm in Section 3.1 and Appendix 2). By
simply changing parameter values, one can then explore (and exploit) the
full range of methods from low-order FD on a uniform grid to Chebyshev
(Legendre etc.) and other PS methods. (Obviously, it is also desirable to
structure codes so that time stepping methods (if present) are easily inter-
changeable.) The optimal selections may well turn out to depend not only
on the problem type but also on the solution regimes that are studied, the
accuracy that is desired etc.
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Appendix A. Implementation of Tau, Galerkin and
Collocation (PS) for a ‘toy’ problem

We consider the following model problem
Upy + Uz —2u+2=0, —-1<z<1,
u(—-1) =u(l) =0,
and approximate the exact solution

sinh(2)e” + sinh(1)e2*
sinh(3)

u(x) =1~
by
4
v(z) = Z arTr(x).
k=0

From (2.1) and (2.2) it follows that the residual
4

R(z)=vep v, —20+2= Z AT (z) (A.1)
k=0
satisfies
Ap -2 1 4 3 32 [ ag 2
A1 0 -2 4 24 8 aj 0
Ay | = 0 0 -2 6 48 as | +10 (A.2)
A3z 0 0 0 -2 8 as 0
A4 0 0 0 0 -2 . a4 0
The matrix is obtained as
00 4 0 32 01 0 3 07 1
0 0 24 0 0 4 0 8 1
0 0 48 | + 0 6 0[—-2 1
0 0 0 8 1
0 0 ] 1

corresponding to vz, vy and —2v respectively. In general, 0Pv/0zP, the
matrix becomes AP where A is the inverse of the matrix in (2.1) with all
zero first column and last row added (a consequence of the shift in the
indices between the two column vectors in (2.2)). This procedure to find
the elements of A generalizes immediately to Jacobi ploynomials. Closed
form expressions for Azj (the element at row 7, column 7, 0 < 7,7 < n) turn
out to be very simple for both Legendre and Chebyshev expansions. In the
Chebyshev case:

A= 1/¢i x 25 j>1i,i+ 7 odd,
bl 0 otherwise,
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A2 = /e x (§ —4)3(F +14), j>1i,1+ ] even,
E 0, otherwise,

where

o = 2, +=20o0dd,
T 11, i>0,

and
AP = AP X (j—i—p)(j+i+p)(j—i+p)(j+i—p)/[16p(p+1)], p>1

(can be shown using the theorem in Karageorghis (1988); for Legendre poly-
nomials, see Phillips (1988)).
Enforcing the boundary conditions v(—1) = v(1) = 0 leads to

ap

1 1 1 1 1] Z; =[0]_ (A.3)
a3

a4

Ideally, we would like to get A; = 0, 7 = 0,1,...,4 while still satisfying
(A.3). However, this would mean satisfying seven relations with only five
free parameters a;, ¢ = 0,1,...,4. The three spectral methods differ in how
they approximate this overdetermined system.

Tau Require R(z) (A.1) to be orthogonal to Ty(z), k = 0,1,2:

Ay =0

! R(z)Ty(x) 0=
——————dz=0 = A; =0,
-1 V/1- z2 ’ A; =0.

The top three lines of (A.2) together with (A.3) give
(a0, - .., aq] = [0.2724, —0.0444, —0.2562, 0.0444, —0.0162].

Galerkin Create from Ty,..., Ty three basis functions ®5, &35, ®4 which
satsfy both boundary conditions:

P2 (z) Ty(z) — To(z),
®3(x) T3(z) — Ta(z),
i(z) = Ti(z) — To(z).
Then v(z) = Yj_p cx®i(2) which is equal to Y f_o axTi(x) constrained
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by (A.3). Require R(x) to be orthogonal to ®x(z), k = 2,3,4:

2 0

! R(z) k()
———de=0 =01
\/1—1‘2 o 2 0

Together with (A.2) and (A.3):

[a(),...,

Collocation (PS) Force R(z;) =0 at z; = cos(in/4), 1 =1,2,3:

1 1/v/2 0 -1/vV2 -1
1 0 -1 0 1
1 -1/V/2 0 1/v/2 -1

-1
0
0

0 0
-1 0

0 -1

A
A

Ay | =

A
Ay

Ap
Ay
Ay | =
Aj
Ay

a4) = [0.2741, —-0.0370, —0.2593,0.0370, —0.0148].

8

The section of the discrete cosine transform matrix has the entries Ty (x;) =

coskin/4, k=0,...,
[ao,...,a4] =

In exact arithmetic,

[a0a"'7a4]: %7

and the values at the node locations z;,7 =0, ...

2 2_ l"d’ 350\/_ 0]

O 101 + 13

) 350 350

13

350°

13 13

07 350 '76]

4,i=1,2,3. Together with (A.2) and (A.3):
[0.2473, —0.0371, —0.2600, 0.0143].

,4 become

This description of the PS approach followed the style of those for Tau
and Galerkin, but gave no indication why the PS approach is more flexible
than the other two in cases of variable coefficients and nonlinearities. We
therefore describe the PS method again, this time in terms of nodal values
rather than expansion coeflicients. If v; denote the approximations at the

nodes z; = cosin/4,i =0,1,...
interpolating polynomial become

Vgo _% 4+2\/§
2 -1-4V2 V2
Vg2 | = % _\/5
Vz3 -1+W2 W2
Vz4 L —442V2

~2
V2

0
V3
2

4—22
_%\/5
V2
_%\/5
—4—2V2

1 -

NI o

V2
1+\f

11

2

mlv-'

,4, the first and second derivatives of the

1z
(A.4)
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and
Vezo 17 -20—6v2 18 —20+6v2 5 Vo
Vezl 5+ 3v2 —14 6 -2 5— 32 7
Vega | = -1 4 -6 4 —-1 vy
Vaz3 5—3v2 -2 6 —~14 5+ 3v2 vs
Vzzd 5 —20+6v2 18 —20-62 17 vy

(A.5)
These matrices are examples of ‘differentiation matrices’ — discussed in nu-
merous places in this review. Section 4.3 describes how their elements can
be obtained very conveniently.
Enforcing

Rx)=vpr+v,—20v+2=0

at the node points xg, £ = 1,2,3 and the boundary conditions vg = vy =0
lead to

4-+/2 -8 442 Ve
~2+1V2 6-v2 -16-1v2 | Lus

with the same solution as before:

101 13
[Vl] o+ 1.2
13

~16+1v2 6+v2 -2-1/2 v —2
HREIES

= 2% (A7)

101 13 /9

35 350

Had variable coefficients been present, their values at the nodes would have
been used to multiply the rows of (A.4), (A.5) etc., when assembling (A.6).

Figure A.1 shows how the accuracy increases with n — in all three cases
featuring an exponential rate of convergence. For comparison, curves for
second- and fourth-order FD approximations (on equi-spaced grids) are also
included.

Appendix B. Fortran code and test driver for algorithm to
find weights in FD formulae

SUBROUTINE WEIGHTS (XI,X,N,M,C)
INPUT PARAMETERS:
XI POINT AT WHICH THE APPROXIMATIONS ARE TO BE ACCURATE
X-COORDINATES FOR THE GRID POINTS, ARRAY DIMENSIONED X(O:N)
THE GRID POINTS ARE AT X(0),X(1), ... X(N) (I.E. N+1 IN ALL)
HIGHEST ORDER OF DERIVATIVE TO BE APPROXIMATED

a o a a o 0
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Max nodal
error

1E-05

1E-10

1E-15

1E-20

1E-25

4 6 8 10 12 14 16 18 20 2 24

N (highest Chebyshev  mode
included / N+1 node points)

Fig. A.1. Maximum nodal errors for different methods when applied to ‘toy prob-
lem’ in Appendix 1 — comparison between three spectral implementations and equi-
spaced FD methods of second and fourth order.
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C OUTPUT PARAMETERS:
[ C WEIGHTS, ARRAY DIMENSIONED C(O:N,0:N,0:M).
C ON RETURN, THE ELEMENT C(K,J,I) CONTAINS THE WEIGHT TO BE
C APPLIED AT X(K) WHEN THE I:TH DERIVATIVE IS APPROXIMATED
C BY A STENCIL EXTENDING OVER X(0),X(1), ... , X(J).
C
C
DIMENSION X(O:N),C(O:N,0:N,0:M)
€(0,0,0) = 1.
ci =1.
Cc4 = X(0)-XI
D0 40 J=1,N
MN = MIN(J,M)
C2 = 1.
C5 = C4
C4 = X(J)-XI
DO 20 K=0,J-1
€3 = X(J)-X(K)
C2 = C2*C3
IF (J.LE.M) C(XK,J-1,1)=0.
C(K,J,0) = C4*C(K,J-1,0)/C3
DO 10 I=1,MN
10 C(K,J,I) = (Ca*C(K,J-1,1)-I%C(K,J-1,I-1))/C3
20 CONTINUE
C€(J,J,0) = -C1*C5%C(J-1,J-1,0)/C2
DO 30 I=1,MN
30 C(J,J,I) = C1*(I*C(J-1,J-1,I-1)-C5%C(J-1,J-1,1I))/C2
40 C1 = C2
RETURN

END

Note If N is very large, the calculation of the variable C2 might cause
overflow (or underflow). For example, in generating extensions of Tables 2
and 3, this problem arises when N! exceeds the largest possible number (i.e.
N > 34 in typical 32 bit precision with 3 x 103 as the largest number; N >
965 in CRAY single precision (64 bit word length, 15 bit exponent, largest
number approximately 10246%)). In such cases, scaling of C1 and C2 (only
used in forming the ratio C1/C2) should be added to the code.

The following test program will print out all the entries in Table 3 (includ-
ing a table of coefficients for the zeroth derivative — interpolation weights —
trivial here since approximations are requested at a grid point).

PROGRAM TEST
PARAMETER (M=4,N=8)
DIMENSION X(O:N),C(O:N,0:N,0:M)
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DO 10 I=0,N
10 X(I) =1

CALL WEIGHTS (0.,X,N,M,C)

DO 30 I=0,M

DO 20 J=I,N

20 WRITE (6,40) (C(K,J,I),K=0,J)
30 WRITE (6,%)
40 FORMAT (1X,9F8.3)

STOP

END

All the data in Table 2 can similarly be obtained from a single call to
SUBROUTINE WEIGHTS by initializing

X(0:8) to /0, —1,1,-2,2,-3,3,—4,4/

(and ignore every second line of the output).
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